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Abstract
Monte Carlo (MC) simulations are often at the heart of the testing procedure in
biomedical optics. One of the critical points in MC simulations is to define the
new photon direction after each scattering event. One of the most popular
solutions is to use the Henyey–Greenstein phase function or some linear
combinations of it. In this note, we demonstrate that randomly generating
the angle defining the new direction of a photon after a collision, by means
of the Henyey–Greenstein phase function, is not equivalent to generating the
cosine of this angle, as is classically done. In practice, it is demonstrated that
for a nearly isotropic medium (asymmetry parameter g ∼ 0) this discrepancy
is not large, however for an anisotropic medium as is typically found in vivo
(e.g. g = 0.98) the two methods give completely different results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Assessing the optical properties of human biological tissues is of great interest for clinical
diagnostics and fundamental research, since biomedical optics allow the measurement of
important physiological parameters such as the tissue haemoglobin concentration, tissue
haemoglobin oxygen saturation (Ferrari et al 2004), tissue blood speed/flow (Briers 2001),
etc. In recent years, it has also become possible to build 2D or 3D maps of these quantities,
such as the 3D imaging of the neonatal brain (Gibson et al 2005) or human breast (Yates
et al 2005). The success of these biomedical optics techniques has been made possible thanks
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to the development of various algorithms describing the propagation of photons in tissues
(Arridge et al 1992, Arridge and Hebden 1997, Briers 2001, Dagdug et al 2003). Since these
algorithms describe only an approximation to the propagation of the light in the investigated
medium, their validity needs to be tested.

To test these algorithms, one usually resorts to two methods. The first is based on
real measurements made in phantoms with known optical properties close to those found in
biological tissue (Firbank et al 1995). This method has the advantage of testing simultaneously
the hardware utilized for the measurement and the algorithms in a real situation. The
disadvantage is that in practice it is difficult to test the algorithms on a large set of different
optical parameters or complex heterogeneous geometries because this would require the use
of a large number of phantoms. For this reason, a second method based on Monte Carlo
(MC) simulations was introduced by Wilson and Adam (1983). This mathematical method
numerically describes the propagation of light in tissues with known optical parameters and
geometry and generates synthetic experimental data sets. This approach has become one of
the ‘gold standards’ in biomedical optics and it allows in principle the test of any analytical
algorithm. Moreover, thanks to increasing computational power, the MC method has also
been proposed as a tool to directly ‘fit’ experimental data and thus obtain the wanted optical
parameters (Pifferi et al 1998).

The precision of this method is due to the fact that in the MC methods one describes the
propagation of each photon one by one. Thus, to have a realistic model, it is necessary to
give a series of rules describing with precision the photon propagation inside the tissue (Prahl
et al 1989, Wang et al 1995). In practice, these rules take into account the following physical
phenomena: (1) the probability for a photon to be absorbed; (2) the probability for a photon
to interact with the tissue (scattering) and change direction of propagation; (3) the probability
for a photon to be reflected at a boundary or at an interface between two different tissues; (4) a
rule, usually called a phase function, giving the new direction of the photon after a scattering
event. It is this latter point that is critical to define and it is also probably the part of the
simulation that may require the largest amount of computation time (for one photon run) if a
high precision is required.

Biological tissues have a very complex structure and it is not a trivial matter to decide
which phase function will be the best choice. Fortunately, in many cases, if the distance
between the source of light and the detector is large enough (e.g. 20–30 mm) (Canpolat and
Mourant 2000), the problem simplifies and it becomes possible to reasonably describe the
photon scattering by a very general phase function. The Henyey–Greenstein (HG) phase
function (Henyey and Greenstein 1941) plays this role and takes into account all the scattering
bodies of the tissue as a whole ‘mean’ scattering body (Jacques et al 1987). The original HG
function described the probability of scattering at a particular angle, i.e. θ . The evaluation of
the HG function may take a relatively long computation time during the photon path estimation,
but by using a clever mathematical transformation (Witt 1977) it is possible to express the HG
function in terms of cos(θ) and obtain a very simple analytical solution that can be used to
implement a fast numerical algorithm allowing the generation of a specific random distribution
of scattering angles.

In fact, this procedure is not strictly necessary and in the present note we will show that
this procedure may introduce large errors in the MC simulations. By using this fast algorithm,
the MC simulation may on one hand reproduce the experimental data quite well but it does not
accurately represent the physics for which it was theoretically designed and this might lead to
errors in the physical/physiological interpretation of the data, in the testing of the analytical
models, or in the derivation of synthetic data with the aim of developing direct MC-based
fitting algorithms. To summarize, in the present work we will compare two very well known
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methods to generate the HG phase function and show that if utilized in MC simulations they
are not exactly equivalent as has previously been assumed.

2. Materials and methods

2.1. Computer cluster for the Monte Carlo simulation

The MC simulations were performed on a cluster of nine computers (DELLTM, OptiPlex
GX620, USA) having CPUs running at 3.2 GHz (Kirkby and Delpy 1997). One computer was
utilized as a client, distributing the jobs to the remaining eight workers. The MC code was
developed in MATLAB R© 7.2 language (The Mathworks Inc., Natick, MA) and the interaction
between the computers was controlled by the MATLAB R© Distributed Computing Engine 2.
It has been estimated that a gain of a time factor of ∼7.5 can be obtained with eight machines
compared to only one.

2.2. Photon propagation in a semi-infinite isotropic medium

To demonstrate the influence on the MC data of using different algorithms to randomly generate
θ , a simple semi-infinite isotropic medium has been chosen. An infinitely narrow light beam
source normal to the surface has been utilized. The detector was also placed normal to the
surface at a distance r (mm) from the source (interoptode distance). The light source was
considered as a continuous-wave source. The intensity of the photons detected at a distance
r from the source, R(r), was expressed as a photon probability per unit area (mm−2) and this
was one of the measured parameters.

The MC code has been written following the same approaches given in the classical
literature (Prahl et al 1989, Wang et al 1995) and in this work two different approaches were
used to generate the scattering angles (see the next section).

The parameters common to all the simulations were µa = 0.025 mm−1, µ′
s = 0.6 mm−1

(representing e.g. a ‘typical’ muscle tissue), the number of photon packets in the simulation
N = 1000 000, r ∈ [0, 40] mm. All the simulations obtained with these parameters were
repeated twice, with n = 1 and n = 1.4, respectively.

2.3. Computation of the Henyey–Greenstein phase function: direct (‘exact’) solution

The HG phase function (Henyey and Greenstein 1941) can be written as

PHG(θ) = 1

4π

1 − g2

(1 + g2 − 2g cos(θ))3/2
, (1)

where PHG(θ) is a probability density function and θ ∈ [0, π ] (rad) is the angle existing
between the direction of the photon before a scattering event and the direction after the
scattering event. The parameter g is defined as

g ≡ 〈cos(θ)〉 =
∫ π

0
cos(θ)PHG(θ)2π sin(θ) dθ. (2)

A value θ = 0 rad means that the photon carries on in the same direction as before the collision.
If g = 0, then the medium is said to be isotropic, this means that the photon has the same
probability of going in any direction. In practice, the angle θ is generated millions of times
during an MC simulation and the obtained angles must satisfy the behaviour of the probability
density function described by equation (1). As originally proposed by Witt (1977), it is possible
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Figure 1. Parameter ξ as a function of the angle θ , for g = 0, obtained by using equations (3) (red
points) and (6) (blue points). The ξ values are uniformly spaced and vary from 0 to 1 in steps of
0.01 (the same ξ are utilized for the blue and red points).

to simulate the random event for which the variable θ falls with probability PHG(θ) dθ in the
interval [θ, θ + dθ ] by using a uniformly distributed random number ξ = [0, 1] such that∫ θ

0
PHG(θ ′) dθ ′ = ξ . (3)

Thus, the problem is to solve equation (3) and to obtain an analytical solution expressing θ as
a function of ξ . Unfortunately, to our knowledge, this can be done only numerically and this
certainly increases the duration of the simulation. To solve equation (3), in the present case
we have followed the procedure proposed by Toublanc (1996).

In practice, the integral in equation (3) has been numerically evaluated only once at the
beginning of the MC simulation (for a given g and different θ varying from 0 to π in steps
of π × 10−3 rad) by using an adaptive Lobatto quadrature rule (Gander and Gautschi 2000).
This gives a monotonically increasing table of values as a function of θ . The obtained values
have been normalized from 0 to 1. Thus, for a randomly generated ξ value it is easy to find
the corresponding angle θ by linear interpolation. By construction, θ obtained by generating
a set of uniformly distributed values ξ follow the distribution law given by equation (1) and
can be utilized for the MC simulation. Figure 1 shows ξ as a function of θ using the direct
solution, i.e. equation (3).

2.4. Computation of the Henyey–Greenstein phase function: classical solution

Classically, the angle θ is not computed directly because, as it was highlighted in section 2.3,
this can demand a lot of computation time. Thus, to increase the computation speed, Witt
(1977) has proposed to compute directly cos(θ). In fact, it is cos(θ) that is utilized in the
longest loops of the MC code and not directly θ . The probability density function for cos(θ)

(P̃HG(cos(θ))) is easily found by slightly modifying equation (1) and is expressed as

P̃HG(cos(θ)) = 1

2

1 − g2

(1 + g2 − 2g cos(θ))3/2
. (4)
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To generate the distribution P̃HG(cos(θ)), one can use the same procedure as in section 2.3 by
writing

∫ cos(θ)

−1
P̃HG(cos(θ ′)) d(cos(θ ′)) = ξ . (5)

The advantage of this formulation is that equation (5) has an exact analytical solution that can
be expressed as

cos(θ) =




1

2g

[
1 + g2 − ( 1 − g2

1 − g + 2gξ

)2]
, if g �= 0,

2ξ − 1, if g = 0.

(6)

The hypothesis often made is that the random cos(θ) obtained by generating a set of
uniformly distributed values ξ follow the distribution law given by equation (4) (derived from
equation (1)) and thus can also be utilized for the MC simulation.

3. The simulations

To highlight the eventual differences existing between the approaches represented by
equations (1) and (4), in the present work we have performed two MC simulations. Each
of the two simulations was performed for the direct (equation (1)) and for the classical
(equation (4)) case. In all the simulations, the measured parameters were R(r) and θ . All the
generated θ were used to create a histogram with 420 equally spaced containers covering the
[0, 180]◦ range (each container covers 0.43◦). In the classical case, when cos(θ) is generated,
the angle θ was computed applying the relationship θ = acos(cos(θ)) before counting.

Simulation 1. In this MC simulation, the simplest case has been considered where the medium
is perfectly isotropic, i.e. g = 0. This means that the distribution of the measured θ should be
‘flat’, i.e. the light is scattered with the same probability in all directions (Bohren and Huffman
1983).

Simulation 2. This is same as simulation 1 but with g = 0.98. This is the value often chosen
to describe a biological tissue. The photons are in this case strongly forward scattered.

4. Results

In figure 2 (simulation 1), the photon probability per unit area R(r) is reported as a function of
the interoptode distance r for different n values and g = 0 (isotropic medium). The distance r
is reported in steps of 0.3 mm. There is no large difference between the data generated using
equation (1) (random generation of θ ) or equation (4) (random generation of cos(θ)). The
influence of n on R(r) is also small.

Figure 3 (simulation 1) shows the histogram of the scattering angles θ (in degrees) for the
four distinct runs reported in figure 2. It is clear that for the data generated using equation (1)
the θ distribution is perfectly ‘flat’, and this is exactly what one must find with an isotropic
medium (i.e. the same probability of diffusing in all directions). However, if one investigates
the data generated using equation (4), one realizes that the distribution does not represent
an isotropic medium and that very small (0◦) or very large (180◦) angles have practically
zero probability of appearing. The curves with n = 1.4 have in general higher values when
compared to the companion n = 1 curves because the photons are reflected at the air/medium
boundary and remain for more steps inside the medium.
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Figure 2. Photon probability per unit area R(r) reported as a function of the interoptode distance r.
Random cos(θ) means that the cosine of θ has been generated during the Monte Carlo simulation.
Random θ means that θ has been directly generated during the Monte Carlo simulation.
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Figure 3. Histograms of the scattering angles θ in degrees during the four distinct MC simulations.
Random cos(θ) means that the cosine of θ has been generated during the Monte Carlo simulation.
Random θ means that θ has been directly generated during the Monte Carlo simulation.

Figure 4 (simulation 2) is the same as figure 2 but with the difference that g = 0.98. This
means that the photons are very strongly forward scattered. In this case, the choice of the
phase function becomes critical and the results are completely different depending on whether
one chooses the approach represented by equation (1) or (4).

The histograms of the scattering angles θ for g = 0.98 using equations (1) and (4) are
shown in figure 5 (simulation 2). For better visibility, only θ in the range [0, 10]◦ are shown.
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Figure 4. Photon probability per unit area R(r) reported as a function of the interoptode distance r
for the same simulations as in figure 2, but where g = 0.98. Random cos(θ) means that the cosine
of θ has been generated during the Monte Carlo simulation. Random θ means that θ has been
directly generated during the Monte Carlo simulation.

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18
x 10

8

nu
m

be
r 

of
 θ

 e
ve

nt
s 

θ  (deg)

 

random cos(θ): g=0.98, n=1.0

random cos(θ): g=0.98, n=1.4

random θ       : g=0.98, n=1.0

random θ       : g=0.98, n=1.4

Figure 5. Histograms of the scattering angles θ in degrees during the four distinct MC simulations
as in figure 3 but with g = 0.98. Random cos(θ) means that the cosine of θ has been generated
during the Monte Carlo simulation. Random θ means that has θ been directly generated during
the Monte Carlo simulation.

It is interesting to note that the classical algorithm generating cos(θ) flattens the θ distribution
by decreasing the probability of the small angles.

To illustrate the practical consequences of these findings, figure 6 shows the same data as
figure 4 for n = 1.4 (corresponds e.g. to a skeletal muscle tissue) together with four very well



N320 T Binzoni et al

0 5 10 15 20 25 30 35 40
10

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0

r  (mm)  

R
(r

) 
(m

m
2 )

 

Random Walk (semi infinite)

Patterson (semi infinite)

Contini (slab)

Contini (semi infinite approx.)

random cos(θ):  g=0.98,  n=1.4

random θ       :  g=0.98,  n=1.4

8

Figure 6. Photon probability per unit area R(r) reported as a function of the interoptode distance
r. Comparison of MC simulated data and four analytical models (see the text).

known and tested analytical models describing these data. The models are (1) the random
walk model for a semi-infinite medium but for n always equal to 1 (Bonner et al 1987), (2)
the classical Patterson diffusion equation (Patterson et al 1989), (3) the Contini model for a
slab where the slab thickness has been set to 1 × 106 mm to simulate a semi-infinite medium
(Contini et al 1997) and (4) an analytical approximation of the latter model, given by the same
authors, for a semi-infinite medium. As expected, the Contini model for the slab is the best
fitting model. However, it must be noted that the results of these analytical models only agree
well with the MC results using the classical HG (equation (5)), i.e. the phase function for
which cos(θ) has been generated randomly. The MC results using the direct HG function, i.e.
equation (1), however, are different from the analytical results for g = 0.98.

5. Discussion and conclusions

In this note, it has been demonstrated that the MC results obtained by randomly generating
cos(θ) are not equivalent to those by directly generating θ (i.e. the ‘exact’ direct method).
In fact, the function ‘cos’ introduces a distortion in the probability density function for θ

and thus produces a biased phase function. The results can be explained by the fact that a
uniform distribution of cos(θ) values does not give by definition a uniform distribution after
the operation acos(cos(θ)) (physically, an isotropic medium implies a uniform distribution of
θ but not of cos(θ)). Intuitively, this can be seen in figure 1 where two sets of θ have been
generated using the algorithms represented by equations (3) (red points) and (6) (blue points).
In this case, the ξ values vary from 0 to 1 and are equally spaced (step of 0.01). However, it is
clear that the corresponding θ values are not equally spaced in the case of equation (6) and that
the values around 90◦ are more ‘dense’ (this is not the case for the red curve, equation (3)).
Thus, in practice, when sampling with the blue curve, the probability of obtaining 90◦ angles
is higher for instance than that of obtaining e.g. 0◦ or 180◦ (considering that ξ or 1 − ξ lead to
the same distribution, the increasing or decreasing behaviour for the red and blue curves has
no consequences on the results).
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In practice, even with this distortion the MC results using the classical cos(θ) method
seem to reproduce the experimental data (e.g. on phantoms) well. Moreover, the MC data also
seem to be compatible with a series of known analytical models derived from approximations
of the transport equation for the light. This can be explained by the fact that the classical
method generates a higher number of θ close to 90◦ than it should do in the original HG
function. This facilitates the randomization (isotropization) of the photons and thus it gives
results that by definition are more suitable for comparison with descriptions using the diffusion
equation with a transport corrected scattering coefficient.

The present results provide evidence to support the use of more realistic phase functions
derived directly from Mie theory, as already proposed by Canpolat and Mourant (2000). This
is certainly very important if one would like to study situations where the interoptode spacing is
very small (Canpolat and Mourant 2000) and where the photon does not cover enough distance
to randomize θ . When the classical cos(θ) method is used to perform MC simulations, one
must be aware that the scattering angles thus generated are very different from those generated
using the original HG function when θ is randomized.
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Abstract
In this letter the authors highlight the presence of an error appearing in the
discussion of the note ‘The use of the Henyey–Greenstein phase function in
Monte Carlo simulations in biomedical optics’ previously published by them
(Binzoni et al 2006 Phys. Med. Biol. 51 N313). In the light of this error, the
discussion and conclusions in the original paper are revised in this letter and
the role of the use of the phase functions in MC simulations, interpreted in
probabilistic terms, is better clarified. The exact definition for the probability
density function for the deflection angle, in the case of the Henyey–Greenstein
model, is also given.

In this letter the authors highlight the presence of an unnoticed error appearing in the discussion
of the note ‘The use of the Henyey–Greenstein phase function in Monte Carlo simulations in
biomedical optics’ previously published by them (Binzoni et al 2006). For this reason, we
have revised the discussion of the data and the role of the use of the phase functions in Monte
Carlo (MC) simulations, interpreted in probabilistic terms, is better clarified.

In MC simulations one describes the random direction chosen at each step by a photon
by means of a so-called phase function. In the MC context, the ‘phase function’ means the
‘probability density’ for the random variables describing the deflection and azimuthal angle of
the photon direction changes occurring after each collision inside the medium. In the scientific
literature, the difference between the term ‘phase function’ used for instance in the context
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of the electromagnetic wave theory of the light scattering process, and the term ‘probability
density function’ utilized in a stochastic sense as for MC simulations is often unclear. In
the previously published note the authors wished to highlight this fact and, for explanatory
purposes, they considered the particular case of the Henyey–Greenstein phase function
(HGF).

It is well known that there are two equivalent ways to represent the phase function
and/or the probability density for the HGF: one giving directly the probability density for
the deflection angle θ and the other the cosine of the angle, cos(θ ) (appearing in the note as
PHG(θ ) and P̃ HG(cos(θ)), respectively). The function PHG(θ ) is the historical representation
of the HGF reported in the majority of the published paper and interpreted as a probability
density for the MC simulations. For the purpose of the present letter, it is important to note
again that the random variable in this latter case is θ , and thus, from the probabilistic point of
view defined by the MC model, PHG(θ ) must be integrated over θ to obtain a probability and
not over any other variable such as the solid angle! The aim of the note was to show that in the
Monte Carlo (probabilistic) context PHG(θ ) and P̃ HG(cos(θ)), as presented in the literature,
are not equivalent. The problem comes from the fact that it is incorrect to interpret PHG(θ ) as
a probability density function for θ . In so doing, the MC results will be inaccurate. In fact, the
authors of the original 1941 paper have utilized a simplified notation that cannot be directly
interpreted as a probability density function for θ , and this is the source of the confusion. The
advantage of the HGF is that it allows us to demonstrate this problem in a simple manner, i.e.
by considering the isotropic case where the solution can be easily foreseen.

The error introduced in the note was the incorrect definition of ‘isotropic scattering’
(representing an isotropic medium). In fact, it was stated that for an isotropic medium the
probability density for θ must be a ‘flat’ function in order to have a uniform distribution of
the scattering angles. This definition is wrong because it is the number of photons per unit
solid angle that must be constant. It is in this way that the projections of all the randomly
generated photon directions (for a given input direction) on the surface of a sphere, centred on
the scattering site, will be truly uniformly distributed (and thus isotropic).

The consequence of this is that the exact function to be used in MC simulations is
P̃ HG(cos(θ)) (and not PHG(θ ) as concluded in the note). Thus, PHG(θ ) is not an equivalent
formulation of the Henyey–Greenstein probability density function because it does not give
the correct result. In practice, the exact Henyey–Greenstein probability density for θ should
be

PHG(θ) = 1

2

(1 − g2) sin(θ)

(1 + g2 − 2g cos(θ))3/2

and not the expression so often reproduced in the literature (i.e. equation (1) in the previously
published note).

This result seems to be trivial; however, if one considers more sophisticated probability
density functions holding for arbitrarily shaped scattering particles (e.g. spheres, cylinders,
etc), where there may also be a simultaneous dependence on both the deflection and on the
azimuthal angle, an exact definition is necessary. Indeed, in these complex cases, it will not
be possible for the reader to check the validity by using for example the particular isotropic
case. In such cases, the confusion between ‘phase function’ coming from the wave theory
and ‘probability density functions’ utilized in the MC context may lead to the wrong results
or interpretation as shown in the note. Of course, if one uses the exact formulations for
P̃ HG(cos(θ)) and PHG(θ ) (shown above in this letter) one obtains exactly the same results for
both computation strategies.

We hope that this letter has now clarified this point. We would also like to sincerely
thank Dr T J Farrell and Dr M S Patterson from the Juravinski Cancer Centre and McMaster
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University (Canada) for having notified us of the existence of the error in the original definition
of isotropy.
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